Q. 2 a. A Computer company requires 30 programmers to handle system programming Jobs and 40 programmers for application programming. If the company appoints 55 programmers to carry out these Jobs, how many of these perform Job of both types ? How many can handle only system programming jobs? How many can handle application programming.
b. Three students $\mathrm{x}, \mathrm{y}, \mathrm{z}$ write an examination. Their chances of passing are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that.
(i) all of them pass (ii) atleast one of them passes.

Answer:

a) Let $A \rightarrow$ Set of programmers who handle system programming $\sqrt{0} b$. $B \rightarrow$ Set of programmers who handle application programming Given $|A|=30:|B|=40 ;|A \cup B|=55$.
Addition rule is $|A \cup B|=|A|+|B|-|A \cap B|$
$|A \cap B|=|A|+|B|-|A \cup B|=15$
This means 15 programmers perform both lypes of Jobs
\therefore The number of programoners who handle only systems
plogramoning $\sqrt{0} b$ is $|A-B|=|A|-|A \cap B|=30-15=15$
and the number of programmers who handle only application= \rightarrow programming is $|B-A|=|B|-|A \cap B|=40-15=25$.
b)

Define $X \leftarrow$ event that the student x passing the examination $y \leftarrow \cdots$
$z \in \cdots$
$p(x)=\frac{1}{2} ; \quad P(y)=\frac{1}{3}: P(z)=\frac{1}{4}$.

$$
p(\bar{x})=\frac{1}{2}: p(\bar{y})=\frac{2}{3}: \quad p(\bar{z})=3 / 4 .
$$

Let $E_{1} \leftarrow$ event that all of them pass
$\therefore P\left(E_{1}\right)=P[$ all three of them passing the examination]

$$
=P[x \cap y \cap z]=\frac{d}{2} P(x) P(y) P(z)=\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{1}{4}\right)=\frac{1}{24}
$$

Given $P(x)=\frac{1}{2} ; P(y)=\frac{1}{3}: P(z)=\frac{1}{4}$
$P(\bar{x})=\frac{1}{2}: P(\bar{y})=\frac{2}{3}: \quad P(\bar{z})=3 / 4$.

Let $E_{2} \leftarrow$ event that at least one of them passing the examination.

$$
P\left(E_{2}\right)=1-P \text { (none of them passing the Examination) }
$$

$$
N=1-p(\bar{x} \cap \bar{y} \cap \bar{z})=1-p(\bar{x}) p(\bar{y}) p(\bar{z})=3 / 4 \text {. }
$$

Q. 3 b. Show that $\neg \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})]$ and $\exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{x})]$ are logically equivalent.

Answer:

$$
\begin{aligned}
& \text { Let } \neg \forall x(P(x) \rightarrow a(x)) \text { is lave } \\
& \Leftrightarrow \quad \forall x(p(x) \rightarrow Q(x)) \text { is Fats } \\
& \Leftrightarrow \quad(P(x) \rightarrow G(x)) \text { is False } \\
& \Longleftrightarrow p(x) \text { is ane and } a(x) \text { is False for every } x \text { in the domain. } \\
& \Leftrightarrow P(x) \text { is time for all } x \text { in the domain and } Q(x) \text { is Face } \\
& \text { for some } x \text { in the romani } \\
& \Rightarrow P(x) \text { is lave for all } x \text { in the omanis and } f a(x) \text { is five } \\
& \text { for forme } x \text { in the domain. } \\
& \Rightarrow(P(x) \wedge \neg a(x)) \text { is tine for some } x \text { in the woman perdu } \\
& \Leftrightarrow \exists x(P(x) \wedge \neg a(x)) \text { is five } \\
& \text { - } ᄀ \forall x(p(x) \rightarrow Q(x)) \equiv \ni x(p(x) \wedge \neg Q(x)) \text {. }
\end{aligned}
$$

Q. 4 a. State any Four Rules of Inference and explain.

Answer:
The Four rules of Inference are
(i) Rule of conjunctive simplification: If p and q are any two propositions and if $p \wedge q$ is thrive, then p is lame.

$$
\text { ie }(p \wedge q) \Rightarrow p \text {. }
$$

(ii) Rule of Disturnctuve Amplification: If p and q are any two propositions and of p is tone, then $p \vee q$ is true ie $p \Rightarrow(p \vee q)$. (iii) Rule of syllogism: If p, q and r are any three propositions and if $p \rightarrow q$ is true and $q \rightarrow r$ is tome, then $p \rightarrow r$ is tame ie $p \rightarrow q$

$$
\therefore \frac{q \rightarrow r}{p \rightarrow r}
$$

(iv) Modus pones (Rule of Detachment): If p is tine and $p \rightarrow q$ is tome then q is tome ie

$$
\begin{gathered}
p \\
\frac{p \rightarrow q}{\therefore q}
\end{gathered}
$$

(v) Modes Tollen's:

If $p \rightarrow q$ is true and q is Fabre, then p is fabre p cm

$$
\text { ie } \begin{aligned}
& p \rightarrow q \\
& \rightarrow q \\
& \therefore 7 p
\end{aligned} \text { (Note: Any Four ca }
$$

b. Show that the hypothesis" If you send me an e-mail message, then I will finish writing the program" "If you don't send me an e-mail message, then I will go to sleep early". And If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion " If I do not finish writing the program, then I will wake up feeling refreshed.
Answer:

Q. 5 a. Prove the following statement by mathematical induction. If a set has n elements then its powerset has 2^{n} elements.
Answer:
If A is any set with $|A|=n$ then $|P(A)|=2^{n}$
If $n=0$, then $|A|=0$ then $|P(A)|=2^{\circ}=1$, tine. N ie $P(A)=\{\phi\}$.
If A is a set with $|A|=k$, then $|P(A)|=2^{k}$ (ie A has 2^{k} subsets)
If B is a set witt $|B|=K+1$, we shall prove that $|P(B)|=2^{k+1}$ (B has 2^{k+1} subsets) Detirie a set $C=B-\{x\}$, where x is any particular element. Then $|c|=K \therefore|P(c)|=2^{k}$. ie there are 2^{k} subsets of a which are afro subsets of B. Take the union of all these subsets with $\{x\}$ which gries another 2^{k} subsets of B. Thus the total subsets of $B=2^{k}+2^{k}=2^{k+1}$.
The result is proved for $n=k+1$ also. Hence it is time for all integral values of n.
b. Suppose U is a universal set and $\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2} \ldots \ldots . \mathrm{B}_{\mathrm{n}} \subseteq \mathrm{U}$ prove that

$$
A \cap\left(B_{1} \cup B_{2} \cup \ldots . . \cup B_{n}\right)=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots .\left(A \cap B_{n}\right)
$$

Answer:

```
By distributive Law we have An (B,\cup\mp@subsup{B}{2}{})=(A\cap\mp@subsup{B}{1}{})\cup(A\cap\mp@subsup{B}{2}{})
```

Result is true for $n=2$
We shall ass ump it at the result is line for $n=k \geq 2$, e
$A \cap\left(B_{1} \cup B_{2} \cup \ldots \cup B_{K}\right)=\left(A \cap B_{1}\right) \cap\left(A \cap B_{2}\right) \cap \ldots \ldots \cap\left(A \cap B_{K}\right)$
we shall row prove the result for $n=k+1$, consider
$A \cap\left(B_{1} \cup B_{2} \cup \ldots . \cup B_{k+1}\right)=A n\left\{\left(B_{1} \cup B_{2} \cup \ldots \ldots \cup B_{K}\right) \cup B_{K+1}\right\}$
$=\left\{A \cap\left(B_{1} \cup B_{2} \cup \ldots \cup \cup B_{K}\right)\right\} \cup\left(A \cap B_{K+1}\right)$
$=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots\left(A \cap B_{K}\right) \cup\left(A \cap B_{K+1}\right)$
\square his shows that the result is lave for $n=k+1$ afro. Hence by
Mathematical induction the result is true for $n \geq 2$.
Q. 6 a. Define the following (i) Reflexive (ii) Symmetric (iii) Transitive properties of Relation with an example. What is an equivalence relation?

Answer:

Reflexive property: A Relation R on a set A is said to
Retlesuive if $\forall a \in A,(a, a) \in R$.
Ex: Let N represents the set of N atuial numbers and R is the relation on N suet that $(a, b) \in R$ if a / b, we know that ala $\therefore(a, a) \in R \quad \forall a \in N: R$ is Reflexive.
Symmetric propaly: A Relation R on a set A is said to be symmetric if $\forall a, b \in A$ and $(a, b) \in R \Rightarrow(b, a) \in R$ Ex: Let N be the set of N atural number and R is the relation on N such that $a, b \in R$ of $a-b$ is a multiple of $5 \Rightarrow(b-a)$ is afro a multiple of 5 .
Transitive property: A Relation R on a set A is said to be Transilitue if $\forall a, b, c \in A$ whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
$E x$: Let Δ be the set of Natural numbers and R is the relation on $N \rightarrow(a, b) \in R$ if $a<b$. If $a<b$ and $b<c$ then $a<c \therefore R$ is Tr.
b. Define the partial order and POSET. If R is a Relation on the set $A=$ $\{1,2,3,4$,$\} defined by R=\{(x, y) \mid x, y \in A$ and x divides $y\}$ prove that (A, R) is a POSET and draw its Hesse diagram.
Answer:

Q. 7 a. If ' o ' is an operation on z defined by x o $\mathrm{y}=\mathrm{x}+\mathrm{y}+1$ prove that (z, o) is an abelian group.
b. Prove that any two left (or right) cosets of a sub group H of a group G are either disjoint or identical.

Answer:

Q $7 a) \forall a, b \in z, a+b+1$ is arr an integer $\in z$
\therefore closure axiom is satistied
$\forall a, b, c \in z, a *(b * c)=a \circ(b 0 c)=a 0(b+c+1)=a+b+c+2$
$(a \circ b) \circ c=(a+b+1) \circ c=a+b+c+2$
ASSoinatime aruion we satistred.
$\forall a \in z$ we have $a \circ e=a$ ie $a+e+1=a \Rightarrow e=-1 \in z$
I denting element is -1
$\forall a \in z \Rightarrow b \in z \Rightarrow a * b=e \Rightarrow a+1=e$

$$
\text { ie } a+b+1=-1 \quad \Rightarrow \quad b=-2-a \in 2
$$

$$
\text { Inverse exesels for eaclelement of } z \therefore \text { Inverse arviom iss satistred. }
$$

b)

$$
\begin{aligned}
& \text { et } a H, b H \text { are the two costs of } H \\
& \text { If } a H \cap b H=\phi \text { (must prove that } a H=b H \text {) } \\
& \text { Let } C \in a H \cap b H \Rightarrow C \in a H \text { and } c \in b H \Rightarrow C=a h_{1}: c=b h_{2}, h_{1} h_{2} \in H \text {. } \\
& \therefore a h_{1}=b h_{2} \quad \therefore a=b h_{2} h_{1}^{-1}=b h_{3} \rightarrow(1) \\
& \text { why } b=a h_{4} \text {. } \\
& \text { Let } x=a h \text { where } h \in H \quad \begin{aligned}
\therefore & =a b h_{3} h \text { fro }(1) \\
& =b h_{5} \in b H \Rightarrow a H \text { rs a subset of } b H
\end{aligned} \\
& 111 \text { lb we can prove that } b H \text { is a subset of } a H \quad \therefore a H=b H \text {. }
\end{aligned}
$$

Q. 8 a. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are Bijective functions then prove that $(\text { goff })^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
Answer:
Since f and g are bifective functions
$(g \circ f): A \rightarrow C$ is arvo bifective
f and g are bifective functions
$\Rightarrow f^{-1}: B \rightarrow A: g^{-1}: C \rightarrow B$ are also bifétive.
$(g \circ f)^{-1}: C \rightarrow A$ is afro bilective Now for $b \in B$ and $c \in G \quad g(b)=c \Rightarrow b=g^{-1}(c)$ $f: A \rightarrow B \Rightarrow f(a)=b, a \in A$ and $b \in B \Rightarrow a=f^{-1}(b)$ $(g \circ f): A \rightarrow c \Rightarrow(g \circ f)(a)=c$ for $a \in A$ and $c \in a$ $a=(g \circ f)^{-1}(c) \rightarrow(1)$
consider $\left(f^{-1} \circ g^{-1}\right) c=f^{-1}\left[g^{-1}(c)\right]=f^{-1}(b)=a \rightarrow(2)$ From (1) and (2) $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
b. If $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{R}$, the set of all real numbers. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$;
$g: B \rightarrow C \& f(a)=2 a+1 ; g(b)=b / 3$ find (i) fog (-2) (ii) g of (-1) (iii)
verify that $(\mathrm{g} \text { of })^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
Answer:

$$
\begin{aligned}
& \text { (i) } f \circ g(-2)=f(g(-2))=f(-2 / 3) \quad \because g(b)=b / 3 \\
& =2(-2 / 3)+1=-1 / 3 . \\
& \text { (ii) } g \circ f(-1)=g(f(-1))=g(-1)=-1 / 3 \text {. } \\
& \text { (iii) oof: } A \rightarrow C \\
& (g \circ f)(a)=c \text { where } a \in A \text { and } c \in C \text { : } \\
& g[f(a)]=c \Rightarrow g[2 a+1]=c \Rightarrow \frac{2 a+1}{3}=c \Rightarrow a=\frac{3 c-1}{2} \\
& (g \circ f) a=c \rightarrow a=(g \circ f)^{-1} c \Rightarrow \frac{3 c-1}{2}=(g \circ f)^{-1} c \rightarrow(1) \\
& f: A \rightarrow B, f(a)=b \text { where } a \in A \text { and } b \in B \\
& f(a)=2 a+1=b \Rightarrow a=\frac{b-1}{2} . f(a)=b \Rightarrow a=f^{-1}(b) \frac{\vdots-1}{2}=j^{-1}(b) \\
& g: B \rightarrow C, g(b)=c \text { where } b \in B, c \in C \\
& g(b)=b / 3=c \Rightarrow b=3 c ; g(b)=c \Rightarrow b=g^{-1}(c) \Rightarrow 3 c=g^{-1}(c) \text {. } \\
& \text { consider }\left(f^{-1} \circ g^{-1}\right) c=f^{-1}\left[g^{-1}(c)\right]=f^{-1}(3 c)=\frac{3 c-1}{2} \\
& \therefore(g \circ f)^{-1} c=\left(f^{-1} \circ g^{-1}\right) c \text {. }
\end{aligned}
$$

Q. 9 a. The parity - check Matrix for an encoding function $E: Z_{2}^{3} \rightarrow Z_{2}^{6}$ is given by

$$
\mathrm{H}=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(i) Determine the associated generator Matrix
(ii) Does this code correct all single errors is transmission.

Answer:
we have cr,
b. Define a Ring.

Find all integers k and m for which $(\mathrm{z}, \oplus, \Theta)$ is a Ring under the binary operations

$$
x \oplus y=x+y-k, x \Theta y=x+y-m x y
$$

Answer:

```
Definituon: Let }R\mathrm{ be a non empty set which is closed under 
binary operatrons 'T' and, ''. Then R together with these operation
is called a Ring provided the bollowing axioms hold..
(i)}R\mathrm{ is an abehoin group under't
(ii) The operatron - is assowatume in R ie a\cdot(b,c)=(a\cdotb) =c
iii) The operatoon. is distributune over the operalön + in R ie
    a-(b+c) =a-b+a-c; (a+b)-c=a,a-c+b-c;}\quad\foralla,b,c\inR
For (z,\oplus),\odot) to be a Ring, it is necessary that the dirstributive lavis
must hold (writh the othee Laws). Jhus we shonld have
    x\odot(y\Thetaz)=(x\Thetay)+(x\odotz), by using the dexinition of (4) and }0\mathrm{ , we find
    x\odot(y\oplusz)=x+}=x+(y\oplusz)-mx(y\oplusz)=x+(y+z-k)-mx(y+z-k
    = x+y+z-m(>cy+xz)-v+mkx-> (i)
(x\odoty)\oplus(x\odotz)=(x\odoty)+(x\odotz)-k
    =(x+y-mxy)+(x+z-mxz)-k
    = x+y+z-m(xy+xz)-k+x}
    From (i) e(ii) }x=mkx,mk=
    m=k=1 or m}=m=k=-1
```

